skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Khaldieh, Mariam"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A formulation of discrete gravity was recently proposed based on defining a lattice and a shift operator connecting the cells. Spinors on such a space will have rotational SO(d) invariance which is taken as the fundamental symmetry. Inspired by lattice QCD, discrete analogues of curvature and torsion were defined that go smoothly to the corresponding tensors in the continuous limit. In this paper, we show that the absence of diffeomorphism invariance could be replaced by requiring translational invariance in the tangent space by enlarging the tangent space from SO(d) to the inhomogeneous Lorentz group ISO(d) to include translations. We obtain the ISO(d) symmetry by taking instead the Lie group SO(d+ 1) and perform on it Inonu-Wigner contraction. We show that, just as for continuous spaces, the zero torsion constraint converts the translational parameter to a diffeomorphism parameter, thus explaining the effectiveness of this formulation. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026